Jiman Hwang, Svetlana Selivanova, Martin Ziegler

Happy Birthday, iRRAM! Considerations for the Future of Exact Real Computation

KAIS

197

한국과학기

Exact Real Computation: Continuous Abstract Data Types

- real numbers, vectors/matrices, polynomials, subspaces (Seokbin Lee)
- Structures from Calculus I~IV sequences, power series, analytic functions (Holger Thies)

KAIST

Complexity and

Real Computation

to agree with

- continuous/smooth/integrable functions
- exactly: compact Euclidean domains
- no rounding errors! bounded operators

Modularize Exact Real Computation

FFT/ Strassen-Schönhage

Engine: execute/simulate user code with <u>finite</u> precision sufficient to "behave" as exact/<u>infinite</u> precision

realLib iRRAM core2

hardware (FPGA/ASIC)

Goal

Double-double

• Example

a = 0.10110100 (assuming 4-bit prec.) = $1.011 \times 2^{-1} + 1.010 \times 2^{-6}$

- All operations are component-wise
 - ex) multiplication

		(1.010×2^{0}	+	1.000×2^{-4})
×		(1.000×2^1	+	1.000×2^{-4})
			1.010×2^{-4}	+	1.000×2^{-8}
1.010×2^{1}	+		1.000×2^{-3}		
1.010×2^{1}	+		1.101×2^{-3}	+	$\frac{1.000 \times 2^{-8}}{2}$

- \circ Advantage: hardware support \rightarrow fast at low precision
- $^\circ\,$ Disadvantage: lack of algorithms $\,\,$ $\rightarrow\,\,$ slow at high precision

Experiments

1.

Matrix multiplication ABand Polynomial multiplication P(x)Q(x)

with each element/coefficient <u>double-double vs MPFR</u> (103-bit) (≈103-bit)

2. Matrix multiplication ABand Polynomial multiplication P(x)Q(x)

with each element/coefficient <u>quad-double vs MPFR</u> (209-bit) (≈209-bit)

Why mat. and poly.? Frequent use in science and engineering

Both used long multiplication and QD library¹

¹ David H. Bailey, https://www.davidhbailey.com/dhbsoftware/

Result 1: Double-double(DD) vs MPFR

• (ratio) = $\frac{\text{(calc. time by MPFR)}}{\text{(calc. time by DD)}} \rightarrow \text{the greater is, the faster double-double is}$

Double-double runs at least 4 times faster.

Result 2: Quad-double(QD) vs MPFR

 $\circ (ratio) = \frac{(calc. time by MPFR)}{(calc. time by QD)}$

 \rightarrow the greater is, the faster quad-double is

No feasible gain

Extended Double-Double(EDD)

• x87 chipset provides extended double.

• Extended double-double vs Double-double?

Double-Double(DD) vs Extended Double-Double(EDD)

Conclusion

frac	exp
n	32

